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Higgs: A Light, Composite Scalar?

LHC results show the Higgs is a relatively light scalar.
A composite scalar is a natural mechanism, e.g., in superconductivity.

Its mass is a function of dynamics: avoids fine-tuning.

Can composite strong dynamics produce a light scalar relative to the
rest of the spectrum?

o Partially conserved dilatation current (PCDC)?

e Consequence of near-conformal dynamics?

@ Recent lattice studies have indicated a light scalar in possibly
near-conformal theories.
e SU(3) 8 flavor fundamental (Y. Aoki et al., arXiv:1403.5000)
e SU(3) 2 flavor sextet (Fodor et al. PoS(Lattice 2013)062,
arXiv:1401.2176)
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Targeting the Conformal Window: SU(3) fundamental

o It is difficult to target the conformal window.
@ Nf = 4 has confining, chirally broken behavior. No IRFP.

e Nf = 12 has growing evidence for conformal behavior at an IRFP.
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Fermion mass parameterization

@ What if there was another knob to turn?
@ Start with 12 massless fermions.

Evan Weinberg (Boston University) Scalars on the Lattice June 23, 2014 4/21



Fermion mass parameterization

@ What if there was another knob to turn?
@ Start with 12 massless fermions.
@ Give mass to 8 of them.

e 4 remain massless fermions: my =0

e 8 tuneable massive fermions: my # 0
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Fermion mass parameterization

@ What if there was another knob to turn?

@ Start with 12 massless fermions.

@ Give mass to 8 of them.
e 4 remain massless fermions: my =0
e 8 tuneable massive fermions: my # 0
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@ As mp — 0, we recover the 12
flavor chirally symmetric theory
exactly at my = 0.

@ As mp — 0o, we get the 4 flavor

chirally broken theory due to
decoupling.
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Flow Diagram
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Studying the 448 Model

@ We can tune ourselves to walking behavior by varying my,.
@ This is a 448 flavor model to study walking dynamics.

o Gauge Action: Mixed Fundamental-Adjoint Action.
e Fermion Action: nHYP Smeared Staggered
e FUEL for HMC and Measurements
o Developed by James Osborn, Algorithms and Machines: Parallel 1F at
3:35 earlier today.

@ Explorations of the 44-8 flavor theory:
@ Running Coupling
@ Scale-dependent Fermion Anomalous Dimension
© Spectrum
© Finite T Phase Diagram

@ Preliminary results on:

o (1) and (2) are being presented by Oliver Witzel during Tuesday's
poster session.
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Setting my,

@ Our choice of my, should
set how long our theory
walks. "= Ny=1

@ Need to choose my, large
enough to see chirally ke

my ﬁUu)

broken behavior. 7
o Plan:
o Fix my ~0
o Use (1)1)), as an order )
parameter for chirally . _:)
broken phase. my, =0 3 IR}N[
e Start my = my: :
chirally symmetric.

@ Raise my, until onset of chiral symmetry breaking.
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Physics Parameter: (41)),

o Chirally symmetric phase: (1)), — 0 as my — 0.
o Parametrically small.

e Chirally broken phase: (1)), oc A3

confinement
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Physics Parameter: (41)),

o Chirally symmetric phase: (1)), — 0 as my — 0.

o Parametrically small.

e Chirally broken phase: (1)), oc A3
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Volume Dependence: Zero my Limit

@ Recall: (gpy)ttice = e <1/_1¢>§hys

@ Define ww['m[:o.o = linear extrapolation of (¢4}, to m; = 0.
e Linear extrapolation from my; = 0.005,0.010, errors in quadrature.
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@ Recall: (gpy)ttice = e <1/_1¢>§hys

@ Define ww[lm[:o.o = linear extrapolation of (¢4}, to m; = 0.
e Linear extrapolation from my; = 0.005,0.010, errors in quadrature.
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e We find a regime of volume-independent physics for 243 x 48 volumes.
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Looking at the Scale: Wilson Flow

@ Wilson Flow can be used to define a lattice scale.

Evan Weinberg (Boston University) Scalars on the Lattice June 23, 2014 10 / 21



Looking at the Scale: Wilson Flow

@ Wilson Flow can be used to define a lattice scale.
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@ Scale is independent of volume.
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Spectrum finite volume effects: M, gs

e Wall sources, point sinks following Gupta et al. Phys.Rev.D(43) 1991.
@ Focus on the Goldstone Boson pion mass for finite size effects.
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Spectrum finite volume effects: M, gs

e Wall sources, point sinks following Gupta et al. Phys.Rev.D(43) 1991.
@ Focus on the Goldstone Boson pion mass for finite size effects.
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@ 163 suffer finite size effects, while 243 and 323 are safe for
my = 0.010, mj, > 0.060.
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Control and Measurements

We've identified a chirally broken regime independent of volume
effects.

Meaningful results on modest 243 x 48 lattices.
1000 configurations separated by 10 MDTU.

9 sets of ensembles:

e m; = 0.005,0.010,0.015 for a light flavor chiral limit.
e mpy = 0.060,0.080,0.100 to test theories with different RG flow.

@ There is autocorrelation depending on my, my—understood and
controlled with blocking.
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Connected Spectrum: M, ¢p

@ Performed correlated fit of a single cosh to folded data.

C(t) = Aycosh (Mﬂ(z _ t)>
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Connected Spectrum: M, ¢p

@ Performed correlated fit of a single cosh to folded data.

C(t) = Aycosh (Mﬂ(z _ t)>

e Fitont =11 to 24.
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Connected Spectrum: M,,

@ Performed correlated fit of a single cosh plus oscillating term to
folded data.

C(t) = Au,cosh <I\/Iao(;— - t)) + Ay (—1)tcosh <Mwsc(;— - t))
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Connected Spectrum: M,,

@ Performed correlated fit of a single cosh plus oscillating term to
folded data.

C(t) = Au,cosh <I\/Iao(;— - t)> + Ay (—1)tcosh <Mwsc(;— - t))

@ Fiton t =13 to 24.
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Connected Spectrum: Overall

@ Measured light flavor meson spectrum (7, ag, p).
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Disconnected Spectrum: Stochastics and Dilution

@ Stochastic sources and dilution to probe the light-flavor 07" meson.

e 6 U(1) noise sources diluted in time, color, and even/odd spatially.
o 1728 inversions per 243 x 48 configuration.
o Current statistics reflect 250 configurations per ensemble.

@ Used improved operators for disconnected measurement.

CCO””(t) = _Aaoe_Maot - (_1)t <A7Tsce_M7rSCt> + -

Caisc(t) = Ae Mot — A, ™Mot 4 (1)t (AWS_Ce*Mﬂs*ct - Aﬂsce*"/’”sct> +..

!
Co(t) = Caise(t) — Coomn(t) = Age Mot 4 (—1)t (A,,s_ce_M“s‘ct) .
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Practical Considerations

@ Vacuum subtraction is noisy in Cgisc(t).
o ldea: Fit correlators with an additional constant.

@ Ceonn(t), C5(t) have large contamination from higher energy states.
o Idea: Replace Ceonn(t) with just analytic fit to ag, 7sc state.
Céonn(t) = _Aaoe_Maot - (_1)t (Aﬂ'sce_MWSCt)
Ctlf(t) = CdiSC(t) - Céonn(t)

o Conclusion: Consistent at large t with using measured Ceopn(t), gives
consistent mass at smaller t.
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Disconnected Spectrum: M,

@ 250 configurations separated by 40 MDTU each.
@ Errors are by jackknife analysis, blocksize of 1.
@ Data has fit constant subtracted for ease of visualization.

C.(t) = Aycosh <I\/I,,(;- - t)> + (—1)tAr,cosh <I\/st_c(;- - t)) +V
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Disconnected Spectrum: M,

@ 250 configurations separated by 40 MDTU each.
@ Errors are by jackknife analysis, blocksize of 1.
@ Data has fit constant subtracted for ease of visualization.
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0" Results

@ Results for different my,.
e Fit lines for M gp reflect PCAC relation.
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Conclusion

Model to study walking behavior with 448 flavors.
Tune to near-conformal behavior by shifting the mass of the 8 flavors.
e my can be tuned continuously as opposed to discretely for Nr.

({1h)¢ on finite volume, as a probe of chiral symmetry breaking,
shows a transition with my,.

e Suggests physically viable parameters where simulations on moderate
lattices can be done.
@ The spectrum shows a splitting of the 07" scalar state from the
connected spectrum.
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Thank you!
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